Prove:∫_0 ^1 (√((((√(K^2 +36K′^2 ))+6K^′ )/(K^2 +36K^(′2) )) ))(dk/( (√k)(1−k^2 )^(2/3) ))=(√π)((√2)−(√((4−2(√2))/3)))
∫_0 ^1 (√(((√(K^2 +36K′^2 ))+6K^2 )/(K^2 +36K^(′2) ))) (dk/( (√k)(1−k^2 )^(2/3) ))
k=sinθ⇒dk=cosθdθ,θ∈[0,(π/2)]
(√k)=sinθ,(1−k^2 )^(2/3) =cos^(4/3) θ
(dk/( (√k)(1−k^2 )^(2/3) ))=((cosθdθ)/( (√(sinθ))cos^(4/3) θ))=sin^(−(1/2)) θcos^(−(1/3)) θdθ
K=K(sin θ),K′=K′(sinθ)=K(cosθ)
∫_0 ^(π/2) (√(((√(K^2 (sin θ)+36K′^2 (sin θ)))+6K′(sin θ))/(K^2 (sinθ)+36K′^2 (sinθ))))sin^(−(1/2)) θcos^(−(1/3)) θdθ
K(k)=(π/2) _2 F_1 ((1/2),(1/2);1;k^2 ),K′(k)=(π/2) _2 F_1 ((1/2),(1/2);1;1−k^2 )
(√((√(K^2 +36′^2 ))+6K′))(√(K^2 +36K′^2 ))=(K/( (√((K^2 +36K′^2 )((√(K^2 +36K′^2 ))−6K′)))))
(√(K^2 +36K^2 ))−6K′=(K^2 /( (√(K^2 +26K^(′2) ))+6K^′ ))
(K/( (√((K^2 +36K′^2 )((√(K^2 +36K^′^2 ))−6K′)))))=(K/( (√(K^2 ((√(K^2 +36K′^2 +))6K^′ )))))
=(1/( (√((√(K^2 +36K^(′2) ))+6K′))))
∫_0 ^(π/2) (1/( (√((√(K^2 (sin θ)+36K^2 (sin θ)))+o6K′(sin θ)))))sin^(−(1/2)) θ cos^(−(1/3)) θdθ
K(sin θ)=(π/2)Σ_(n=0) ^∞ ((((1/2))_n ^2 )/((n!)^2 ))sin^(2n) θ,K′(sin θ)=(π/2)Σ_(n=0) ^∞ ((((1/2))_n ^2 )/((n!)^2 ))cos^(2n) θ
(√(K^3 +36K^(′2) ))+6K′=(π/2)Σ_(n=0) ^∞ ((((1/2))_n ^2 )/((n!)^2 ))(sin^(2n) θ+36cos^(2n) θ+6∙cos^(2n) θ)
=(π/2)Σ_(n=0) ^∞ ((((1/2))_n ^2 )/((n!)^2 ))(sin^(2n) θ+48 cos^(2n) θ)
(1/( (√((√(K^2 +36K′^2 ))+6K′))))=Σ_(n=0) ^∞ (((n!)^2 )/(((1/2))_n ^2 )) (1/(sin^(2n) θ+48 cos^(2n) θ))
∫_0 ^(π/2) (1/π)Σ_(n=0) ^∞ (((n!)^2 )/(((1/2))_n ^2 )) (1/(sin^(2n) θ+48cos^(2n) θ))sin^(−(1/2)) θ cos^(−(1/3)) θdθ
=(2/π)Σ_(n=0) ^∞ (((n!)^2 )/(((1/2))_n ^2 ))∫_0 ^(π/2) ((sin^(−(1/2)) θ cos^(−(1/3)) θ)/(sin^(2n) θ+48cos^(2n) θ))dθ
t=tan^2 θ⇒dθ=(dt/(2(√t)(1+t))),sin^2 θ=(t/(1+t)),cos^2 θ=(1/(1+t))
∫_0 ^∞ ((((t/(1+t)))^(−(1/3)) )/(((t/(1+t)))^n +48((1/(1+t)))^n )) (dt/(2(√t)(1+t)))
=∫_0 ^∞ ((t^(−(1/4)) (1+t)^(1/4) (1+t)^(1/6) )/(((t^n /((1−t)^n ))+48(1/((1+t)^n ))))) (dt/(2(√t)(1+t)))
=∫_0 ^∞ ((t^(−(1/4)) (1+t)^((1/4)+(1/6)) )/((t^n +48)/((1+t)^n ))) (dt/(2t^(1/2) (1+t)))
=(1/2) ∫_0 ^∞ ((t^(−(3/4)) (1+t)^((1/4)+(1/6)−n+1) )/(t^n +48))dt
=(1/2)∫_0 ^∞ ((t^(−(3/4)) (1+t)^(((13)/(12))−n) )/(t^n +48))dt
u=(t/(1+t))⇒t=(u/(1−u)),dt=(du/((1−u)^2 ))
(1/2)∫_0 ^1 ((((u/(1−u)))^(−(3/4)) ((1/(1−u)))^(((13)/(12))−n) )/(((u/(1−u)))^n +48)) (du/((1−u)^2 ))
=(1/2)∫_0 ^1 u^(−(3/4)) (1−u)^(3/4) (1−u)^(−((13)/(12))+12) (1−u)^2 (du/(((u^n /((1−u)^n ))+48)))
=(1/2)∫_0 ^1 u^(−(3/4)) (1−u)^((3/4)−((13)/(12))n+2) (du/((u^n /((1−u)^n ))+48))
=(1/2)∫_0 ^1 u^(−(3/4)) (1−u)^((9/(12))−((13)/(12))+n+2) (((1−u)^u du)/(u^n +48(1−u)^n ))
=(1/2)∫_0 ^1 u^(−(3/4)) (1−u)^(n+((23)/(12))) (du/(u^n +48(1−u)^n ))
=(1/1)∫_0 ^1 u^(−(3/4)) (1−u)^(n+((23)/(12))) (du/(1+48(((1−u)/u))^n ))
v=((1−u)/u)⇒u=(1/(1+v)),du=−(dv/((1+v)^2 ))
(1/2)∫_∞ ^0 ((1/(1+v)))^(−(3/4)−n) v^(n+((23)/(12))) (1/(1+48v^n ))(−(dv/((1+v)^2 )))
=(1/2)∫_0 ^∞ (1+v)^((3/4)+n) v^(n+((23)/(12))) (1/(1+48v^n )) (dv/((1+v)^2 ))
=(1/2)∫_0 ^∞ v^(n+((21)/(11))) (1+v)^((3/4)+n−2) (dv/(1+48v^u ))
=(1/2)∫_0 ^∞ v^(n+((23)/(12))) (1+v)^(v−(5/4)) (dv/(1+48v^n ))
w=e^n ⇒dv=(1/n)w^((1/n)−1) dw
(1/2)∫_0 ^∞ w^((n+((23)/(12)))/n) (1+w^(1/n) )^(n−(5/4)) (1/(1+48w)) (1/n)w^((1/n)−1) dw
=(1/(2n))∫_0 ^∞ w^((n/n)+((23)/(12n))+(1/n)−1) (1+w^(1/n) )^(n−(5/4)) (dw/(1+48w))
=(1/(2n))∫_0 ^∞ w^(1+((23)/(12n))+(1/n)−1) (1+w^(1/n) )^(n−(5/4)) (dw/(1+48w))
=(1/(2n))∫_0 ^∞ w^(((35)/(12n))+(1/n)) (1+w^(1/n) )^(n−(5/4)) (dw/(1+48w))
≈(1/(2n))∫_0 ^∞ w^((35)/(12n)) e^((n−(5/4))w^(1/n) ) (dw/(1+48n)) for large n
Γ(((35)/(12))+1)((Γ((1/2)))/(Γ(((35)/(12n))+(3/2)))) (1/(48^(((35)/(12n))+1) ))
Σ_(n=0) ^∞ (((n!)^2 )/(((1/2))_n ^2 )) (1/(2n)) Γ(((35)/(12n))+1)((Γ((1/2)))/(Γ(((35)/(12n))+(3/2)))) (1/(48^(((35)/(12n))+1) ))=(√π)((√2)−(√((4−2(√2))/3)))
|