Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 225054    Answers: 0   Comments: 1

Question Number 225047    Answers: 2   Comments: 0

∫ x^x dx

$$\int\:{x}^{{x}} \:{dx} \\ $$

Question Number 225020    Answers: 1   Comments: 1

tgx+tgy+tgz=A tg^3 x+tg^3 y+tg^3 z=?

$$\:\:\:{tgx}+{tgy}+{tgz}={A} \\ $$$$\:\:\:{tg}^{\mathrm{3}} {x}+{tg}^{\mathrm{3}} {y}+{tg}^{\mathrm{3}} {z}=? \\ $$

Question Number 225003    Answers: 0   Comments: 22

The new symbols are in progress. New update will be release by end of this month with - Close integration symbols - Italic greek capital letters - Ability to upload GIF images If anyone has any other improvement suggestion please email us or comment here

$$\mathrm{The}\:\mathrm{new}\:\mathrm{symbols}\:\mathrm{are}\:\mathrm{in} \\ $$$$\mathrm{progress}.\:\mathrm{New}\:\mathrm{update}\:\mathrm{will}\:\mathrm{be}\:\mathrm{release} \\ $$$$\mathrm{by}\:\mathrm{end}\:\mathrm{of}\:\mathrm{this}\:\mathrm{month}\:\mathrm{with} \\ $$$$-\:\mathrm{Close}\:\mathrm{integration}\:\mathrm{symbols} \\ $$$$-\:\mathrm{Italic}\:\mathrm{greek}\:\mathrm{capital}\:\mathrm{letters} \\ $$$$-\:\mathrm{Ability}\:\mathrm{to}\:\mathrm{upload}\:\mathrm{GIF}\:\mathrm{images} \\ $$$$ \\ $$$$\mathrm{If}\:\mathrm{anyone}\:\mathrm{has}\:\mathrm{any}\:\mathrm{other}\:\mathrm{improvement} \\ $$$$\mathrm{suggestion}\:\mathrm{please}\:\mathrm{email}\:\mathrm{us}\:\mathrm{or}\:\mathrm{comment} \\ $$$$\mathrm{here} \\ $$

Question Number 224989    Answers: 0   Comments: 0

Calculate D_n = determinant (((x_1 +a_1 ^2 ),(a_1 a_2 ),…,(a_1 a_n )),((a_2 a_1 ),(x_2 +a_2 ^2 ),…,(a_2 a_n )),(⋮,⋮,⋱,⋮),((a_n a_1 ),(a_n a_2 ),…,(x_n +a_n ^2 )))

$$\mathrm{Calculate} \\ $$$${D}_{{n}} =\begin{vmatrix}{{x}_{\mathrm{1}} +{a}_{\mathrm{1}} ^{\mathrm{2}} }&{{a}_{\mathrm{1}} {a}_{\mathrm{2}} }&{\ldots}&{{a}_{\mathrm{1}} {a}_{{n}} }\\{{a}_{\mathrm{2}} {a}_{\mathrm{1}} }&{{x}_{\mathrm{2}} +{a}_{\mathrm{2}} ^{\mathrm{2}} }&{\ldots}&{{a}_{\mathrm{2}} {a}_{{n}} }\\{\vdots}&{\vdots}&{\ddots}&{\vdots}\\{{a}_{{n}} {a}_{\mathrm{1}} }&{{a}_{{n}} {a}_{\mathrm{2}} }&{\ldots}&{{x}_{{n}} +{a}_{{n}} ^{\mathrm{2}} }\end{vmatrix} \\ $$

Question Number 224985    Answers: 0   Comments: 0

A dairy man gives ada and amaka eight litre of milk to share and ada carry five litre container and amaka Carry three litre container how can ada and amaka share the eight litre of milk equally.

$$\mathrm{A}\:\mathrm{dairy}\:\mathrm{man}\:\mathrm{gives}\:\mathrm{ada}\:\mathrm{and}\: \\ $$$$\mathrm{amaka}\:\mathrm{eight}\:\mathrm{litre}\:\mathrm{of}\:\mathrm{milk}\:\mathrm{to}\:\mathrm{share}\: \\ $$$$\mathrm{and}\:\mathrm{ada}\:\mathrm{carry}\:\mathrm{five}\:\mathrm{litre}\:\mathrm{container} \\ $$$$\mathrm{and}\:\mathrm{amaka}\:\mathrm{Carry}\:\mathrm{three}\:\mathrm{litre} \\ $$$$\mathrm{container}\:\mathrm{how}\:\mathrm{can}\:\mathrm{ada}\:\mathrm{and}\:\mathrm{amaka} \\ $$$$\mathrm{share}\:\mathrm{the}\:\mathrm{eight}\:\mathrm{litre}\:\mathrm{of}\:\mathrm{milk}\:\mathrm{equally}. \\ $$

Question Number 224982    Answers: 0   Comments: 4

We have made some improvement is search. Search matching is done using AI so you should now get better search results.

$$\mathrm{We}\:\mathrm{have}\:\mathrm{made}\:\mathrm{some}\:\mathrm{improvement} \\ $$$$\mathrm{is}\:\mathrm{search}. \\ $$$$\mathrm{Search}\:\mathrm{matching}\:\mathrm{is}\:\mathrm{done}\:\mathrm{using}\:\mathrm{AI} \\ $$$$\mathrm{so}\:\mathrm{you}\:\mathrm{should}\:\mathrm{now}\:\mathrm{get}\:\mathrm{better}\: \\ $$$$\mathrm{search}\:\mathrm{results}. \\ $$

Question Number 224966    Answers: 2   Comments: 2

cos(π/7) − cos((2π)/7) + cos((3π)/7) = ? Help me please

$$ \\ $$$$\:\:\:{cos}\frac{\pi}{\mathrm{7}}\:−\:{cos}\frac{\mathrm{2}\pi}{\mathrm{7}}\:+\:{cos}\frac{\mathrm{3}\pi}{\mathrm{7}}\:=\:? \\ $$$$\:\:\:{Help}\:{me}\:{please} \\ $$$$ \\ $$

Question Number 224951    Answers: 1   Comments: 0

Question Number 224948    Answers: 2   Comments: 1

∫ (√x)sin x dx

$$\int\:\sqrt{{x}}\mathrm{sin}\:{x}\:{dx} \\ $$

Question Number 224947    Answers: 0   Comments: 0

REDACTED

$${REDACTED}\: \\ $$

Question Number 224938    Answers: 0   Comments: 0

S;(x,y,z)∈R^3 ∣x^2 +y^2 +z^2 =r^2 Find Geodesic equation ((d )/dt)∙(dx^i /dt)+Γ_(jk) ^i (dx^j /dt)∙(dx^k /dt)=0 , Γ_(jk) ^i =g^(il) ((∂g_(kl) /∂x_j )−(∂g_(jl) /∂x_k )+(∂g_(jk) /∂x_l ))

$$\mathcal{S};\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} \mid{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\mathrm{Find}\:\mathrm{Geodesic}\:\mathrm{equation} \\ $$$$\frac{\mathrm{d}\:\:}{\mathrm{d}{t}}\centerdot\frac{\mathrm{d}{x}^{{i}} }{\mathrm{d}{t}}+\Gamma_{{jk}} ^{{i}} \frac{\mathrm{d}{x}^{{j}} }{\mathrm{d}{t}}\centerdot\frac{\mathrm{d}{x}^{{k}} }{\mathrm{d}{t}}=\mathrm{0}\:\:,\:\:\Gamma_{{jk}} ^{{i}} =\mathrm{g}^{{il}} \left(\frac{\partial\mathrm{g}_{{kl}} }{\partial{x}_{{j}} }−\frac{\partial\mathrm{g}_{{jl}} }{\partial{x}_{{k}} }+\frac{\partial\mathrm{g}_{{jk}} }{\partial{x}_{{l}} }\right) \\ $$

Question Number 224927    Answers: 1   Comments: 2

Question Number 224926    Answers: 1   Comments: 0

∫ ((sin x)/x) dx

$$\int\:\frac{\mathrm{sin}\:{x}}{{x}}\:{dx} \\ $$

Question Number 224924    Answers: 1   Comments: 1

∫_0 ^(2π) ((xsin^(2n) x)/(sin^(2n) x+cos^(2n) x)) dx=π^2 (prove)

$$\underset{\mathrm{0}} {\overset{\mathrm{2}\pi} {\int}}\frac{{x}\mathrm{sin}^{\mathrm{2}{n}} {x}}{\mathrm{sin}^{\mathrm{2}{n}} {x}+\mathrm{cos}^{\mathrm{2}{n}} {x}}\:{dx}=\pi^{\mathrm{2}} \:\left({prove}\right) \\ $$

Question Number 224922    Answers: 1   Comments: 0

Domain f(x)=(√(log _e (x^2 −6x+6)))

$${Domain} \\ $$$${f}\left({x}\right)=\sqrt{\mathrm{log}\:_{{e}} \left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{6}\right)} \\ $$

Question Number 224920    Answers: 0   Comments: 0

∫_( 0) ^( 1) ((x ln(1 + x) Li_2 (x))/(1 + x^2 )) dx

$$\int_{\:\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{x}\:\mathrm{ln}\left(\mathrm{1}\:\:\:+\:\:\:\mathrm{x}\right)\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{1}\:\:\:\:+\:\:\:\:\mathrm{x}^{\mathrm{2}} }\:\mathrm{dx} \\ $$

Question Number 224919    Answers: 0   Comments: 0

T(x,y);R^2 →R , T(x,y)=((x/a))^2 +((y/b))^2 K(x,y)=(4/(a^2 b^2 (1+((4x^2 )/a^4 )+((4y^2 )/b^4 ))^2 )) ∫_( S) dr^2 K=? S; sheprical coordinate and associate with Euler characteristic χ(T)

$${T}\left({x},{y}\right);\mathbb{R}^{\mathrm{2}} \rightarrow\mathbb{R}\:,\:\:{T}\left({x},{y}\right)=\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} +\left(\frac{{y}}{{b}}\right)^{\mathrm{2}} \\ $$$${K}\left({x},{y}\right)=\frac{\mathrm{4}}{{a}^{\mathrm{2}} {b}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{4}{x}^{\mathrm{2}} }{{a}^{\mathrm{4}} }+\frac{\mathrm{4}{y}^{\mathrm{2}} }{{b}^{\mathrm{4}} }\right)^{\mathrm{2}} } \\ $$$$\int_{\:\mathcal{S}} \mathrm{d}\boldsymbol{\mathrm{r}}^{\mathrm{2}} {K}=? \\ $$$$\mathcal{S};\:\mathrm{sheprical}\:\mathrm{coordinate} \\ $$$$\:\: \\ $$$$\:\mathrm{and}\:\mathrm{associate}\:\mathrm{with}\:\mathrm{Euler}\:\mathrm{characteristic}\:\chi\left({T}\right) \\ $$

Question Number 224908    Answers: 1   Comments: 2

Hello Everyone We recently did an update that cause view older button to be partially hidden behind the navigation button. We will release an update soon. workaround Tap + sign at top of screen to open editor and then press back. Then the button will be shown correctly Part of the button is still visible and you can press at the edge. Fix We will upload another update today amd it will be available to download in two to three days.

$$\mathrm{Hello}\:\mathrm{Everyone} \\ $$$$\mathrm{We}\:\mathrm{recently}\:\mathrm{did}\:\mathrm{an}\:\mathrm{update}\:\mathrm{that} \\ $$$$\mathrm{cause}\:\mathrm{view}\:\mathrm{older}\:\mathrm{button}\:\mathrm{to}\:\mathrm{be}\:\mathrm{partially} \\ $$$$\mathrm{hidden}\:\mathrm{behind}\:\mathrm{the}\:\mathrm{navigation}\:\mathrm{button}. \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{release}\:\mathrm{an}\:\mathrm{update}\:\mathrm{soon}. \\ $$$$ \\ $$$$\boldsymbol{\mathrm{workaround}} \\ $$$$\mathrm{Tap}\:+\:\mathrm{sign}\:\mathrm{at}\:\mathrm{top}\:\mathrm{of}\:\mathrm{screen}\:\mathrm{to}\:\mathrm{open} \\ $$$$\mathrm{editor}\:\mathrm{and}\:\mathrm{then}\:\mathrm{press}\:\mathrm{back}.\:\mathrm{Then}\:\mathrm{the} \\ $$$$\mathrm{button}\:\mathrm{will}\:\mathrm{be}\:\mathrm{shown}\:\mathrm{correctly} \\ $$$$\mathrm{Part}\:\mathrm{of}\:\mathrm{the}\:\mathrm{button}\:\mathrm{is}\:\mathrm{still}\:\mathrm{visible}\:\mathrm{and} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{press}\:\mathrm{at}\:\mathrm{the}\:\mathrm{edge}. \\ $$$$\boldsymbol{\mathrm{Fix}} \\ $$$$\mathrm{We}\:\mathrm{will}\:\mathrm{upload}\:\mathrm{another}\:\mathrm{update}\:\mathrm{today} \\ $$$$\mathrm{amd}\:\mathrm{it}\:\mathrm{will}\:\mathrm{be}\:\mathrm{available}\:\mathrm{to}\:\mathrm{download} \\ $$$$\mathrm{in}\:\mathrm{two}\:\mathrm{to}\:\mathrm{three}\:\mathrm{days}. \\ $$

Question Number 224907    Answers: 1   Comments: 0

Let B={(x,y,z)∈R^3 :x^2 +y^2 +z^2 ≤1} and define u(x,y,z)=sin ((1−x^2 −y^2 −z^2 )^2 ) for (x,y,z)∈B. Then the value of ∫∫∫_(B) ((∂^2 u/∂x^2 )+(∂^2 u/∂x^2 )+(∂^2 u/∂z^2 ))dxdydz is ..........

$${Let}\:{B}=\left\{\left({x},{y},{z}\right)\in\mathbb{R}^{\mathrm{3}} :{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \leqslant\mathrm{1}\right\} \\ $$$${and}\:{define}\:{u}\left({x},{y},{z}\right)=\mathrm{sin}\:\left(\left(\mathrm{1}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} −{z}^{\mathrm{2}} \right)^{\mathrm{2}} \right) \\ $$$${for}\:\left({x},{y},{z}\right)\in{B}. \\ $$$${Then}\:{the}\:{value}\:{of} \\ $$$$\underset{{B}} {\int\int\int}\left(\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }+\frac{\partial^{\mathrm{2}} {u}}{\partial{z}^{\mathrm{2}} }\right){dxdydz}\:{is}\:.......... \\ $$

Question Number 224915    Answers: 1   Comments: 0

evaluate ∫_C (3y^2 +2z^2 )dx+(6x−10z)y dy +(4xz−5y^2 )dz along the portion from (1,0,1) to (3,4,5) of the curve C, which is the intersection of the two surfaces z^2 =x^2 +y^2 and z=y+1

$${evaluate}\: \\ $$$$\int_{{C}} \left(\mathrm{3}{y}^{\mathrm{2}} +\mathrm{2}{z}^{\mathrm{2}} \right){dx}+\left(\mathrm{6}{x}−\mathrm{10}{z}\right){y}\:{dy}\:+\left(\mathrm{4}{xz}−\mathrm{5}{y}^{\mathrm{2}} \right){dz} \\ $$$${along}\:{the}\:{portion}\:{from}\:\left(\mathrm{1},\mathrm{0},\mathrm{1}\right)\:{to}\:\left(\mathrm{3},\mathrm{4},\mathrm{5}\right)\:{of} \\ $$$${the}\:{curve}\:{C}, \\ $$$${which}\:{is}\:{the}\:{intersection}\:{of}\:{the} \\ $$$${two}\:{surfaces}\:{z}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:{and}\:{z}={y}+\mathrm{1} \\ $$

Question Number 224892    Answers: 1   Comments: 1

lim_(n→0) ∫_0 ^1 e^x^2 sin (nx)dx=?

$$\underset{{n}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:{e}^{{x}^{\mathrm{2}} } \mathrm{sin}\:\left({nx}\right){dx}=? \\ $$

Question Number 224888    Answers: 0   Comments: 2

Question Number 224886    Answers: 1   Comments: 2

Find for acute θ, sin θ and cos θ in terms of 0<k<1, if ((sin θ(1−cos θ))/(cos θ(1−sin θ)))=k.

$${Find}\:{for}\:{acute}\:\theta,\:\mathrm{sin}\:\theta\:{and}\:\mathrm{cos}\:\theta \\ $$$${in}\:{terms}\:{of}\:\mathrm{0}<{k}<\mathrm{1}, \\ $$$${if}\:\:\:\:\frac{\mathrm{sin}\:\theta\left(\mathrm{1}−\mathrm{cos}\:\theta\right)}{\mathrm{cos}\:\theta\left(\mathrm{1}−\mathrm{sin}\:\theta\right)}={k}. \\ $$

Question Number 224884    Answers: 0   Comments: 0

solve partial differantial equation ψ=−k^2 g^(μν) ▽_α ∂_β ψ , k≠0

$$\mathrm{solve}\:\mathrm{partial}\:\mathrm{differantial}\:\mathrm{equation} \\ $$$$\psi=−{k}^{\mathrm{2}} {g}^{\mu\nu} \bigtriangledown_{\alpha} \partial_{\beta} \psi\:,\:{k}\neq\mathrm{0} \\ $$$$\: \\ $$

Question Number 224883    Answers: 0   Comments: 0

∫ vol(g^ )=∫_( V) (√(det g_(μν) )) dx^1 ∧dx^2 ∧dx^3 parametric Surface S^→ (u,v,w);R^3 →R^3 S^→ (r,θ,ρ) { ((rsin(θ)cos(ρ))),((rsin(θ)sin(ρ))),((rcos(θ))) :} find metric tensor g_(μν) = ((g_(11) ,g_(12) ,g_(13) ),(g_(21) ,g_(22) ,g_(23) ),(g_(31) ,g_(32) ,g_(33) ) ) Describe it in the same as ds^2 =g_(μν) dx^μ dx^ν ds^2 =(dr dθ dρ) ((g_(11) ,g_(12) ,g_(13) ),(g_(21) ,g_(22) ,g_(23) ),(g_(31) ,g_(32) ,g_(33) ) ) ((dr),(dθ),(dρ) ) and find volume V=∫ vol(g)

$$\int\:\mathrm{vol}\left({g}^{\:} \right)=\int_{\:{V}} \:\sqrt{\mathrm{det}\:\boldsymbol{\mathrm{g}}_{\mu\nu} }\:\mathrm{d}{x}^{\mathrm{1}} \wedge\mathrm{d}{x}^{\mathrm{2}} \wedge\mathrm{d}{x}^{\mathrm{3}} \\ $$$$\mathrm{parametric}\:\mathrm{Surface}\: \\ $$$$\overset{\rightarrow} {\mathcal{S}}\left({u},{v},{w}\right);\mathbb{R}^{\mathrm{3}} \rightarrow\mathbb{R}^{\mathrm{3}} \\ $$$$\overset{\rightarrow} {\mathcal{S}}\left({r},\theta,\rho\right)\begin{cases}{{r}\mathrm{sin}\left(\theta\right)\mathrm{cos}\left(\rho\right)}\\{{r}\mathrm{sin}\left(\theta\right)\mathrm{sin}\left(\rho\right)}\\{{r}\mathrm{cos}\left(\theta\right)}\end{cases}\: \\ $$$$\mathrm{find}\:\mathrm{metric}\:\mathrm{tensor}\:\boldsymbol{\mathrm{g}}_{\mu\nu} =\begin{pmatrix}{\mathrm{g}_{\mathrm{11}} }&{\mathrm{g}_{\mathrm{12}} }&{\mathrm{g}_{\mathrm{13}} }\\{\mathrm{g}_{\mathrm{21}} }&{\mathrm{g}_{\mathrm{22}} }&{\mathrm{g}_{\mathrm{23}} }\\{\mathrm{g}_{\mathrm{31}} }&{\mathrm{g}_{\mathrm{32}} }&{\mathrm{g}_{\mathrm{33}} }\end{pmatrix} \\ $$$$\: \\ $$$$\mathrm{Describe}\:\mathrm{it}\:\mathrm{in}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{d}{s}^{\mathrm{2}} =\boldsymbol{\mathrm{g}}_{\mu\nu} \mathrm{d}{x}^{\mu} \mathrm{d}{x}^{\nu} \\ $$$$\mathrm{d}{s}^{\mathrm{2}} =\left(\mathrm{d}{r}\:\:\mathrm{d}\theta\:\:\mathrm{d}\rho\right)\begin{pmatrix}{\mathrm{g}_{\mathrm{11}} }&{\mathrm{g}_{\mathrm{12}} }&{\mathrm{g}_{\mathrm{13}} }\\{\mathrm{g}_{\mathrm{21}} }&{\mathrm{g}_{\mathrm{22}} }&{\mathrm{g}_{\mathrm{23}} }\\{\mathrm{g}_{\mathrm{31}} }&{\mathrm{g}_{\mathrm{32}} }&{\mathrm{g}_{\mathrm{33}} }\end{pmatrix}\begin{pmatrix}{\mathrm{d}{r}}\\{\mathrm{d}\theta}\\{\mathrm{d}\rho}\end{pmatrix} \\ $$$$\mathrm{and}\:\mathrm{find}\:\mathrm{volume}\:{V}=\int\:\:\mathrm{vol}\left(\mathrm{g}\right) \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com