Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 226278    Answers: 1   Comments: 0

Question Number 226249    Answers: 1   Comments: 1

Question Number 226246    Answers: 2   Comments: 5

Question Number 226282    Answers: 0   Comments: 1

$$ \\ $$

Question Number 226217    Answers: 2   Comments: 2

Question Number 226178    Answers: 1   Comments: 0

Question Number 226177    Answers: 0   Comments: 0

Question Number 226176    Answers: 1   Comments: 1

Question Number 226173    Answers: 1   Comments: 0

Question Number 226194    Answers: 3   Comments: 0

Question Number 226170    Answers: 0   Comments: 0

Question Number 226149    Answers: 2   Comments: 0

Question Number 226148    Answers: 0   Comments: 0

Question Number 226147    Answers: 1   Comments: 0

Question Number 226143    Answers: 2   Comments: 13

Question Number 226144    Answers: 2   Comments: 0

6^x + 6^y = 42 x + y =3 Find x and y ?

$$\mathrm{6}^{{x}} \:+\:\mathrm{6}^{{y}} \:=\:\mathrm{42} \\ $$$${x}\:+\:{y}\:=\mathrm{3} \\ $$$${Find}\:{x}\:{and}\:{y}\:? \\ $$

Question Number 226136    Answers: 1   Comments: 3

Question Number 226134    Answers: 1   Comments: 0

Q226015

$${Q}\mathrm{226015} \\ $$

Question Number 226138    Answers: 1   Comments: 3

What will be remainder when (9023)^(2029) is divided by 27?

$${What}\:{will}\:{be}\:{remainder}\:{when} \\ $$$$\left(\mathrm{9023}\right)^{\mathrm{2029}} \:{is}\:{divided}\:{by}\:\mathrm{27}? \\ $$

Question Number 226118    Answers: 2   Comments: 0

Question Number 226117    Answers: 3   Comments: 0

Question Number 226124    Answers: 3   Comments: 1

Question Number 226115    Answers: 0   Comments: 3

can we find the black area (the shadow of earth)on the moon during moon eclipse after time t of its starting? Given: Moon radius=R_m Earth rafius=R_e Sun radius=R_s ω_e and ω_m given(both anticlockwise) ω_m ⇒Earth is center ω_e ⇒Sun is center Sun Earth distance(center)=L_(S−E) Earth Moon distance(center)=L_(E−M)

$${can}\:{we}\:{find}\:{the}\:{black}\:{area} \\ $$$$\left({the}\:{shadow}\:{of}\:{earth}\right){on}\:{the}\:{moon}\:{during} \\ $$$${moon}\:{eclipse}\:{after}\:{time}\:{t}\:{of} \\ $$$${its}\:{starting}? \\ $$$${Given}: \\ $$$${Moon}\:{radius}={R}_{{m}} \\ $$$${Earth}\:{rafius}={R}_{{e}} \\ $$$${Sun}\:{radius}={R}_{{s}} \\ $$$$\omega_{{e}} \:{and}\:\omega_{{m}} \:{given}\left({both}\:{anticlockwise}\right) \\ $$$$\omega_{{m}} \Rightarrow{Earth}\:{is}\:{center} \\ $$$$\omega_{{e}} \Rightarrow{Sun}\:{is}\:{center} \\ $$$${Sun}\:{Earth}\:{distance}\left({center}\right)={L}_{{S}−{E}} \\ $$$${Earth}\:{Moon}\:{distance}\left({center}\right)={L}_{{E}−{M}} \\ $$

Question Number 226113    Answers: 0   Comments: 0

Question Number 226112    Answers: 2   Comments: 0

Question Number 226111    Answers: 1   Comments: 0

Show that the equation (1/(sinθ+cosθ)) + (1/(sinθ−cosθ)) = 1 may be express in the form a(sinθ)^2 +bsinθ+c=0 where a b and c are constants to be found.

$${Show}\:{that}\:{the}\:{equation} \\ $$$$\frac{\mathrm{1}}{{sin}\theta+{cos}\theta}\:+\:\frac{\mathrm{1}}{{sin}\theta−{cos}\theta}\:=\:\mathrm{1} \\ $$$${may}\:{be}\:{express}\:{in}\:{the}\:{form} \\ $$$${a}\left({sin}\theta\right)^{\mathrm{2}} +{bsin}\theta+{c}=\mathrm{0}\:{where}\:{a}\:{b}\: \\ $$$${and}\:{c}\:{are}\:{constants}\:{to}\:{be}\:{found}. \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com