∫ vol(g^ )=∫_( V) (√(det g_(μν) )) dx^1 ∧dx^2 ∧dx^3
parametric Surface
S^→ (u,v,w);R^3 →R^3
S^→ (r,θ,ρ) { ((rsin(θ)cos(ρ))),((rsin(θ)sin(ρ))),((rcos(θ))) :}
find metric tensor g_(μν) = ((g_(11) ,g_(12) ,g_(13) ),(g_(21) ,g_(22) ,g_(23) ),(g_(31) ,g_(32) ,g_(33) ) )
Describe it in the same as ds^2 =g_(μν) dx^μ dx^ν
ds^2 =(dr dθ dρ) ((g_(11) ,g_(12) ,g_(13) ),(g_(21) ,g_(22) ,g_(23) ),(g_(31) ,g_(32) ,g_(33) ) ) ((dr),(dθ),(dρ) )
and find volume V=∫ vol(g)
|