Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 213890    Answers: 0   Comments: 0

Question Number 213888    Answers: 0   Comments: 1

Question Number 213887    Answers: 0   Comments: 0

Find amplitude, period, maximum and minimum value for function f(x)= 6 tan ((1/5)x)−8

$$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$

Question Number 213877    Answers: 0   Comments: 0

evaluate. ∫_(−π) ^( +π) (1/(1+3cos^2 (z))) dz real analysis method: complex analysis method:

$$\mathrm{evaluate}. \\ $$$$\int_{−\pi} ^{\:+\pi} \:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({z}\right)}\:\mathrm{d}{z} \\ $$$$\mathrm{real}\:\mathrm{analysis}\:\mathrm{method}: \\ $$$$\mathrm{complex}\:\mathrm{analysis}\:\mathrm{method}: \\ $$

Question Number 213871    Answers: 0   Comments: 5

Question Number 213884    Answers: 0   Comments: 1

Question Number 213861    Answers: 1   Comments: 0

Question Number 213859    Answers: 0   Comments: 5

Question Number 213844    Answers: 3   Comments: 0

∫_(−1) ^1 ∫_0 ^(√(1−x^2 )) ∫_(√(x^2 +y^2 )) ^(√(2−x^2 −y^2 )) (√(x^2 +y^2 +z^2 )) dzdydx

$$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\ $$

Question Number 213841    Answers: 1   Comments: 0

Find the vertical asymptots of , f(x)= tan((( π)/(2x + 2)) ) in [ 0 , 4 ] −−−−−−−−−−−−−

$$ \\ $$$$\:\:{Find}\:{the}\:{vertical}\:{asymptots} \\ $$$$\: \\ $$$$\:\:{of}\:\:,\:\:\:{f}\left({x}\right)=\:\mathrm{tan}\left(\frac{\:\pi}{\mathrm{2}{x}\:+\:\mathrm{2}}\:\right)\:\:{in}\: \\ $$$$\: \\ $$$$\:\:\:\:\:\left[\:\mathrm{0}\:\:,\:\:\:\mathrm{4}\:\right] \\ $$$$\:−−−−−−−−−−−−− \\ $$$$ \\ $$

Question Number 213838    Answers: 1   Comments: 1

Question Number 213835    Answers: 1   Comments: 0

Question Number 213821    Answers: 2   Comments: 0

Find: lim_(x→0) (((sinx)/x))^((sinx)/(x − sinx)) = ?

$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)^{\frac{\mathrm{sinx}}{\mathrm{x}\:−\:\mathrm{sinx}}} \:\:=\:\:? \\ $$

Question Number 213818    Answers: 1   Comments: 1

Question Number 213803    Answers: 2   Comments: 2

Question Number 213802    Answers: 3   Comments: 0

Question Number 213797    Answers: 1   Comments: 0

Question Number 213796    Answers: 4   Comments: 0

Question Number 213817    Answers: 0   Comments: 1

Question Number 213791    Answers: 2   Comments: 2

If x − (x)^(1/3) − (4/( (x)^(1/3) )) = 10 Find (x)^(1/3) − (1/( (x)^(1/3) )) + 3 = ?

$$\mathrm{If}\:\:\:\mathrm{x}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:=\:\:\mathrm{10} \\ $$$$\mathrm{Find}\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:+\:\:\mathrm{3}\:\:=\:\:? \\ $$

Question Number 213790    Answers: 0   Comments: 2

So Weird...... ∫_0 ^( ∞) J_ν (t)e^(−st) dt=(((s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1)))) J_(−ν) (t)=(−1)^ν J_ν (t) ∫_0 ^( ∞) J_(−ν) (t)e^(−st) dt=(((−1)^ν (s+(√(s^2 +1)))^(−ν) )/( (√(s^2 +1)))) is true But ∫_0 ^( ∞) J_(−ν) (t)e^(−st) dt is not (((s+(√(s^2 +1)))^ν )/( (√(s^2 +1)))) why....? can you explain why Blue equation is not true....

$$\mathrm{So}\:\mathrm{Weird}...... \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$$${J}_{−\nu} \left({t}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu} \left({t}\right)\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left(−\mathrm{1}\right)^{\nu} \left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{But}\:\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}\:\mathrm{is}\:\mathrm{not}\:\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{why}....?\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\: \\ $$$$\mathrm{why}\:\mathrm{Blue}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true}.... \\ $$

Question Number 213776    Answers: 1   Comments: 0

Find the value of the following expression. Ω= (( Im( Li_2 (2)))/(∫_0 ^( (π/2)) ln(sin(x )) dx)) = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{F}{ind}\:\:{the}\:\:{value}\:{of}\:\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:{expression}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\Omega=\:\:\:\frac{\:\mathrm{I}{m}\left(\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{2}\right)\right)}{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{sin}\left({x}\:\right)\right)\:{dx}}\:\:=\:? \\ $$

Question Number 213764    Answers: 1   Comments: 0

Question Number 213759    Answers: 0   Comments: 0

Question Number 213757    Answers: 0   Comments: 0

Question Number 213756    Answers: 1   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com