Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1
Question Number 226785 Answers: 0 Comments: 4
Question Number 226780 Answers: 1 Comments: 0
$${By}\:{using}\:{concept}\:{of}\:{complex} \\ $$$${number} \\ $$$${show}\:{that} \\ $$$$\mathrm{tan}\:\mathrm{5}\theta=\frac{\mathrm{tan}\:^{\mathrm{5}} \theta−\mathrm{10tan}\:^{\mathrm{3}} \theta+\mathrm{5tan}\:\theta}{\mathrm{5tan}\:^{\mathrm{4}} \theta−\mathrm{10tan}\:^{\mathrm{2}} \theta+\mathrm{1}} \\ $$
Question Number 226779 Answers: 1 Comments: 0
$${By}\:{using}\:{De}\:{Moivres}\:{theorm} \\ $$$${simplify} \\ $$$$\left({a}\right)\frac{\left(\mathrm{cos}\:\frac{\pi}{\mathrm{2}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right)}{\mathrm{cos}\:\frac{\pi}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}} \\ $$$$\left({b}\right)\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{8}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{8}}}{\mathrm{cos}\:\frac{\pi}{\mathrm{6}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}} \\ $$
Question Number 226778 Answers: 0 Comments: 0
$${Solve}\:{the}\:{following}\:{D}.{E} \\ $$$$\left({a}\right)\:\frac{{dy}}{{dx}}+\mathrm{2}{y}={xy}^{\mathrm{2}} \\ $$$$\left({b}\right)\mathrm{3}\frac{{dy}}{{dx}}+\mathrm{3}\frac{{y}}{{x}}=\mathrm{2}{x}^{\mathrm{4}} {y}^{\mathrm{4}} \\ $$
Question Number 226777 Answers: 0 Comments: 0
$${Show}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}=\frac{\mathrm{4}−\pi}{\mathrm{4}} \\ $$$${Hence}\:{by}\:{using}\:{Simpson}^{'} {s} \\ $$$${rule}\:{find}\:{the}\:{value}\:\:{of}\:\pi \\ $$$${correct}\:{to}\:\mathrm{4}\:{decimal}\:{places} \\ $$
Question Number 226776 Answers: 0 Comments: 0
$${Approximate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {xe}^{{x}^{\mathrm{2}} } {dx}\:{with}\:\mathrm{6}\:{ordinates}. \\ $$$${Use}\:{both}\:{rules}\:{Simpsons}\:{and} \\ $$$${Trapozoidal}\:{rules},{hence}\:{evaluate}\:{and} \\ $$$${calculate}\:{the}\:{percentage}\:{error} \\ $$$${commetted}\:{for}\:{each}\:{case}.{Give}\:{comments} \\ $$$$ \\ $$
Question Number 226775 Answers: 0 Comments: 0
$${Prove}\:{that}\:\left({a}−{b}\right)\left({a}−{c}\right)\left({a}−{d}\right)\left({b}−{c}\right)\left({b}−{d}\right)\left({c}−{d}\right)\:{divisible}\:{by}\:\mathrm{12} \\ $$
Question Number 226771 Answers: 2 Comments: 0
Question Number 226770 Answers: 2 Comments: 0
Question Number 226766 Answers: 1 Comments: 0
Question Number 226755 Answers: 2 Comments: 0
Question Number 226745 Answers: 1 Comments: 2
$${if}\:\frac{{x}}{{lm}−{n}^{\mathrm{2}} }=\frac{{y}}{{mn}−{l}^{\mathrm{2}} }=\frac{{z}}{{nl}−{m}^{\mathrm{2}} } \\ $$$${then}\:{show}\:{lx}+{my}+{nz}=\mathrm{0} \\ $$$$ \\ $$
Question Number 226743 Answers: 0 Comments: 0
$$ \\ $$$${Prove}:\frac{\mathrm{1}}{\mathrm{2}{ne}}<\frac{\mathrm{1}}{{e}}−\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)^{{n}} <\frac{\mathrm{1}}{{ne}} \\ $$
Question Number 226738 Answers: 1 Comments: 0
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Prove}}: \\ $$$$\underset{{v}\rightarrow\infty} {\mathrm{lim}}\sqrt{{n}}\left(\frac{\mathrm{1}}{\mathrm{2}}+{e}^{−{n}} \left(\underset{{k}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\prod}}\begin{pmatrix}{\mathrm{2}{n}}\\{{k}}\end{pmatrix}^{\frac{\mathrm{1}}{\mathrm{2}{n}}} −\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{{n}^{{k}} }{{k}!}\right)\right)=\frac{\mathrm{1}}{\:\sqrt{\pi}}\left(\frac{{e}}{\mathrm{2}}−\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\right) \\ $$
Question Number 226736 Answers: 0 Comments: 7
Question Number 226732 Answers: 1 Comments: 0
Question Number 226728 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\int_{\mathrm{0}} ^{\:\frac{\boldsymbol{\pi}}{\mathrm{4}}} \:\frac{\mathrm{dx}}{\mathrm{1}\:+\:\mathrm{sin}^{\mathrm{2}} \mathrm{x}}\:=\:? \\ $$
Question Number 226721 Answers: 4 Comments: 0
Question Number 226719 Answers: 0 Comments: 1
Question Number 226714 Answers: 1 Comments: 1
Question Number 226713 Answers: 0 Comments: 0
$$\:\:{If}\: \\ $$$${p}=\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} } \\ $$$${what}\:{should}\:{p}=\frac{\left({N}\right)_{\mathrm{4}} }{\left({D}\right)_{\mathrm{4}} } \\ $$$$\left({N}\right)_{\mathrm{4}} \:{means}\:{numerator}\:{of}\:{p}\:\:{in} \\ $$$${quaternary}\:{for}\:{x}\:{to}\:{be}\:\mathrm{777}? \\ $$
Question Number 226705 Answers: 2 Comments: 0
Question Number 226702 Answers: 1 Comments: 0
$$\int\frac{{ln}\left({x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{2}\right)}{{x}^{\mathrm{2}} +\mathrm{1}}{dx}\left[\right. \\ $$
Question Number 226697 Answers: 1 Comments: 1
Question Number 226668 Answers: 1 Comments: 0
Question Number 226653 Answers: 0 Comments: 1
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{Si}\left(\pi{n}\right)}{{n}^{\mathrm{2}} }=? \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com