Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 224510    Answers: 0   Comments: 0

Question Number 224505    Answers: 0   Comments: 0

∫_0 ^1 e^(ax) J_0 (ȷ_(0m) x)dx Where J_0 is the Bessel function and ȷ_(0m) its m-th zero

$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{ax}} {J}_{\mathrm{0}} \left(\jmath_{\mathrm{0}{m}} {x}\right){dx} \\ $$$$\mathrm{Where}\:{J}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{and}\:\jmath_{\mathrm{0}{m}} \:\mathrm{its}\:{m}-\mathrm{th}\:\mathrm{zero} \\ $$

Question Number 224502    Answers: 1   Comments: 0

in a rhombus the perimeter is 2p and the sum of its diagonals is m. the area of rhombus is...

$${in}\:{a}\:{rhombus}\:{the}\:{perimeter} \\ $$$${is}\:\mathrm{2}{p}\:{and}\:{the}\:{sum}\:{of}\:{its}\:{diagonals} \\ $$$${is}\:{m}. \\ $$$${the}\:{area}\:{of}\:{rhombus}\:{is}... \\ $$

Question Number 224499    Answers: 0   Comments: 0

Question Number 224516    Answers: 0   Comments: 0

Question Number 224515    Answers: 1   Comments: 0

((sin 35)/(tan 56))

$$\frac{\mathrm{sin}\:\mathrm{35}}{\mathrm{tan}\:\mathrm{56}} \\ $$

Question Number 224489    Answers: 2   Comments: 4

Question Number 224475    Answers: 0   Comments: 0

Question Number 224476    Answers: 2   Comments: 0

Question Number 224466    Answers: 1   Comments: 2

Question Number 224455    Answers: 1   Comments: 0

If a,b,c ≠ 0 what is the difference between the maximum snd minimum value of S = 1 + ((∣a∣)/a) + ((2∣b∣)/b) + ((3∣ab∣)/(ab)) − ((4∣c∣)/c) ?

$${If}\:{a},{b},{c}\:\neq\:\mathrm{0}\:{what}\:{is}\:{the}\:{difference} \\ $$$${between}\:{the}\:{maximum}\:{snd}\:{minimum}\: \\ $$$${value}\:{of} \\ $$$${S}\:=\:\mathrm{1}\:+\:\frac{\mid{a}\mid}{{a}}\:+\:\frac{\mathrm{2}\mid{b}\mid}{{b}}\:+\:\frac{\mathrm{3}\mid{ab}\mid}{{ab}}\:−\:\frac{\mathrm{4}\mid{c}\mid}{{c}}\:? \\ $$

Question Number 224453    Answers: 0   Comments: 6

Question Number 224443    Answers: 1   Comments: 0

Same problem with me please fix the problem

$$ \\ $$$$\boldsymbol{{S}}{ame}\:{problem}\:{with}\:{me} \\ $$$${please}\:{fix}\:{the}\:{problem} \\ $$

Question Number 224435    Answers: 1   Comments: 1

Question Number 224432    Answers: 1   Comments: 4

Question Number 224417    Answers: 1   Comments: 4

Question Number 224413    Answers: 2   Comments: 4

Question Number 224406    Answers: 1   Comments: 0

Question Number 224399    Answers: 1   Comments: 0

Question Number 224398    Answers: 0   Comments: 5

Question Number 224393    Answers: 0   Comments: 2

there is a number when the digits of the number are suffled randomly a new number is generated which is double of the first number The question is what is the smallest number which satisfies the rules??

$${there}\:{is}\:{a}\:{number}\: \\ $$$${when}\:{the}\:{digits}\:{of}\:{the}\:{number} \\ $$$${are}\:{suffled}\:{randomly}\:{a}\:{new} \\ $$$${number}\:{is}\:{generated}\:{which} \\ $$$${is}\:{double}\:{of}\:{the}\:{first}\:{number} \\ $$$${The}\:{question}\:{is} \\ $$$${what}\:{is}\:{the}\:{smallest}\:{number} \\ $$$${which}\:{satisfies}\:{the}\:{rules}?? \\ $$

Question Number 224392    Answers: 2   Comments: 0

−∞<a<b<∞ and 0<λ<1 x_1 = a , x_2 = b x_(n+2) = λx_n + (1−λ)x_(n+1) ∀ n ∈ N find x_(n ) = ?

$$\:\:\:\:\:\:\:−\infty<{a}<{b}<\infty\:\:{and}\:\mathrm{0}<\lambda<\mathrm{1}\:\: \\ $$$$\:\:\:\:\:\:\:{x}_{\mathrm{1}} \:=\:{a}\:,\:{x}_{\mathrm{2}} \:=\:{b} \\ $$$$\:\:\:\:\:\:\:\:{x}_{{n}+\mathrm{2}} \:=\:\lambda{x}_{{n}} \:+\:\left(\mathrm{1}−\lambda\right){x}_{{n}+\mathrm{1}} \:\:\forall\:{n}\:\in\:\mathbb{N} \\ $$$$\:\:\mathrm{find}\:\:{x}_{{n}\:} \:=\:?\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$

Question Number 224382    Answers: 0   Comments: 7

Q224176. Sir can this be solved without using trigonometry?? If not can you please show me the way which uses trig.the least??

$${Q}\mathrm{224176}. \\ $$$${Sir}\:{can}\:{this}\:{be}\:{solved}\:{without} \\ $$$${using}\:{trigonometry}?? \\ $$$${If}\:{not}\:{can}\:{you}\:{please}\:{show}\:{me} \\ $$$${the}\:{way}\:{which}\:{uses}\:{trig}.{the}\:{least}?? \\ $$

Question Number 224381    Answers: 0   Comments: 0

Question Number 224380    Answers: 0   Comments: 2

Please some geometry Q Living an inactive live for several days...

$${Please}\:{some}\:{geometry}\:{Q} \\ $$$${Living}\:{an}\:{inactive}\:{live}\:{for} \\ $$$${several}\:{days}... \\ $$

Question Number 224373    Answers: 0   Comments: 0

Show that ; I = ∫_( 0) ^( 1) ∫_( 0) ^( 1) ((ln(1+(√(xy))) ln(1+ (√((1−x)/(1−y)))))/( (√(1−x)) (√(1−y)) (x+y))) dxdy I = ζ(3)−((70)/(351))−((280)/(351)) ln 2−((40)/(117)) ln^2 2 +((412)/(351)) ln^3 2 + ((167)/(2106)) π^2 ln 2

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:; \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\underset{\:\:\mathrm{0}} {\overset{\:\:\mathrm{1}} {\int}}\underset{\:\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{xy}}\right)\:\mathrm{ln}\left(\mathrm{1}+\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}−{y}}}\right)}{\:\sqrt{\mathrm{1}−{x}}\:\:\sqrt{\mathrm{1}−{y}}\:\:\left({x}+{y}\right)}\:\:{dxdy}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\zeta\left(\mathrm{3}\right)−\frac{\mathrm{70}}{\mathrm{351}}−\frac{\mathrm{280}}{\mathrm{351}}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{40}}{\mathrm{117}}\:\mathrm{ln}^{\mathrm{2}} \:\mathrm{2}\:+\frac{\mathrm{412}}{\mathrm{351}}\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{2}\:+\:\frac{\mathrm{167}}{\mathrm{2106}}\:\pi^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com