Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1
Question Number 224510 Answers: 0 Comments: 0
Question Number 224505 Answers: 0 Comments: 0
$$\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{{ax}} {J}_{\mathrm{0}} \left(\jmath_{\mathrm{0}{m}} {x}\right){dx} \\ $$$$\mathrm{Where}\:{J}_{\mathrm{0}} \:\mathrm{is}\:\mathrm{the}\:\mathrm{Bessel}\:\mathrm{function}\:\mathrm{and}\:\jmath_{\mathrm{0}{m}} \:\mathrm{its}\:{m}-\mathrm{th}\:\mathrm{zero} \\ $$
Question Number 224502 Answers: 1 Comments: 0
$${in}\:{a}\:{rhombus}\:{the}\:{perimeter} \\ $$$${is}\:\mathrm{2}{p}\:{and}\:{the}\:{sum}\:{of}\:{its}\:{diagonals} \\ $$$${is}\:{m}. \\ $$$${the}\:{area}\:{of}\:{rhombus}\:{is}... \\ $$
Question Number 224499 Answers: 0 Comments: 0
Question Number 224516 Answers: 0 Comments: 0
Question Number 224515 Answers: 1 Comments: 0
$$\frac{\mathrm{sin}\:\mathrm{35}}{\mathrm{tan}\:\mathrm{56}} \\ $$
Question Number 224489 Answers: 2 Comments: 4
Question Number 224475 Answers: 0 Comments: 0
Question Number 224476 Answers: 2 Comments: 0
Question Number 224466 Answers: 1 Comments: 2
Question Number 224455 Answers: 1 Comments: 0
$${If}\:{a},{b},{c}\:\neq\:\mathrm{0}\:{what}\:{is}\:{the}\:{difference} \\ $$$${between}\:{the}\:{maximum}\:{snd}\:{minimum}\: \\ $$$${value}\:{of} \\ $$$${S}\:=\:\mathrm{1}\:+\:\frac{\mid{a}\mid}{{a}}\:+\:\frac{\mathrm{2}\mid{b}\mid}{{b}}\:+\:\frac{\mathrm{3}\mid{ab}\mid}{{ab}}\:−\:\frac{\mathrm{4}\mid{c}\mid}{{c}}\:? \\ $$
Question Number 224453 Answers: 0 Comments: 6
Question Number 224443 Answers: 1 Comments: 0
$$ \\ $$$$\boldsymbol{{S}}{ame}\:{problem}\:{with}\:{me} \\ $$$${please}\:{fix}\:{the}\:{problem} \\ $$
Question Number 224435 Answers: 1 Comments: 1
Question Number 224432 Answers: 1 Comments: 4
Question Number 224417 Answers: 1 Comments: 4
Question Number 224413 Answers: 2 Comments: 4
Question Number 224406 Answers: 1 Comments: 0
Question Number 224399 Answers: 1 Comments: 0
Question Number 224398 Answers: 0 Comments: 5
Question Number 224393 Answers: 0 Comments: 2
$${there}\:{is}\:{a}\:{number}\: \\ $$$${when}\:{the}\:{digits}\:{of}\:{the}\:{number} \\ $$$${are}\:{suffled}\:{randomly}\:{a}\:{new} \\ $$$${number}\:{is}\:{generated}\:{which} \\ $$$${is}\:{double}\:{of}\:{the}\:{first}\:{number} \\ $$$${The}\:{question}\:{is} \\ $$$${what}\:{is}\:{the}\:{smallest}\:{number} \\ $$$${which}\:{satisfies}\:{the}\:{rules}?? \\ $$
Question Number 224392 Answers: 2 Comments: 0
$$\:\:\:\:\:\:\:−\infty<{a}<{b}<\infty\:\:{and}\:\mathrm{0}<\lambda<\mathrm{1}\:\: \\ $$$$\:\:\:\:\:\:\:{x}_{\mathrm{1}} \:=\:{a}\:,\:{x}_{\mathrm{2}} \:=\:{b} \\ $$$$\:\:\:\:\:\:\:\:{x}_{{n}+\mathrm{2}} \:=\:\lambda{x}_{{n}} \:+\:\left(\mathrm{1}−\lambda\right){x}_{{n}+\mathrm{1}} \:\:\forall\:{n}\:\in\:\mathbb{N} \\ $$$$\:\:\mathrm{find}\:\:{x}_{{n}\:} \:=\:?\: \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$
Question Number 224382 Answers: 0 Comments: 7
$${Q}\mathrm{224176}. \\ $$$${Sir}\:{can}\:{this}\:{be}\:{solved}\:{without} \\ $$$${using}\:{trigonometry}?? \\ $$$${If}\:{not}\:{can}\:{you}\:{please}\:{show}\:{me} \\ $$$${the}\:{way}\:{which}\:{uses}\:{trig}.{the}\:{least}?? \\ $$
Question Number 224381 Answers: 0 Comments: 0
Question Number 224380 Answers: 0 Comments: 2
$${Please}\:{some}\:{geometry}\:{Q} \\ $$$${Living}\:{an}\:{inactive}\:{live}\:{for} \\ $$$${several}\:{days}... \\ $$
Question Number 224373 Answers: 0 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{\mathrm{Show}}\:\boldsymbol{\mathrm{that}}\:; \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\underset{\:\:\mathrm{0}} {\overset{\:\:\mathrm{1}} {\int}}\underset{\:\:\mathrm{0}} {\overset{\:\mathrm{1}} {\int}}\:\:\frac{\mathrm{ln}\left(\mathrm{1}+\sqrt{{xy}}\right)\:\mathrm{ln}\left(\mathrm{1}+\:\sqrt{\frac{\mathrm{1}−{x}}{\mathrm{1}−{y}}}\right)}{\:\sqrt{\mathrm{1}−{x}}\:\:\sqrt{\mathrm{1}−{y}}\:\:\left({x}+{y}\right)}\:\:{dxdy}\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\mathcal{I}\:=\:\zeta\left(\mathrm{3}\right)−\frac{\mathrm{70}}{\mathrm{351}}−\frac{\mathrm{280}}{\mathrm{351}}\:\mathrm{ln}\:\mathrm{2}−\frac{\mathrm{40}}{\mathrm{117}}\:\mathrm{ln}^{\mathrm{2}} \:\mathrm{2}\:+\frac{\mathrm{412}}{\mathrm{351}}\:\mathrm{ln}^{\mathrm{3}} \:\mathrm{2}\:+\:\frac{\mathrm{167}}{\mathrm{2106}}\:\pi^{\mathrm{2}} \:\mathrm{ln}\:\mathrm{2}\:\:\:\:\:\:\:\:\:\:\: \\ $$$$ \\ $$
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com