Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1

Question Number 226464    Answers: 0   Comments: 1

Question Number 226455    Answers: 1   Comments: 0

Question Number 226453    Answers: 1   Comments: 3

Question Number 226447    Answers: 1   Comments: 1

Question Number 226442    Answers: 1   Comments: 1

Question Number 226409    Answers: 2   Comments: 0

Question Number 226401    Answers: 4   Comments: 6

most hated trigonometric problem: sin( (π/7))sin (((2π)/7))sin (((3π)/7))=?

$${most}\:{hated}\:{trigonometric} \\ $$$${problem}: \\ $$$$\mathrm{sin}\left(\:\frac{\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{2}\pi}{\mathrm{7}}\right)\mathrm{sin}\:\left(\frac{\mathrm{3}\pi}{\mathrm{7}}\right)=? \\ $$

Question Number 226400    Answers: 0   Comments: 0

Prove klein bottle is Immersion but klein bottle can′t Imbedding in R^3 Space

$$\mathrm{Prove}\:\mathrm{klein}\:\mathrm{bottle}\:\mathrm{is}\:\mathrm{Immersion} \\ $$$$\mathrm{but}\:\mathrm{klein}\:\mathrm{bottle}\:\mathrm{can}'\mathrm{t}\:\mathrm{Imbedding}\:\mathrm{in}\:\mathbb{R}^{\mathrm{3}} \:\mathrm{Space}\: \\ $$

Question Number 226386    Answers: 1   Comments: 4

Question Number 226384    Answers: 1   Comments: 0

Question Number 226375    Answers: 2   Comments: 1

Question Number 226372    Answers: 2   Comments: 1

Question Number 226366    Answers: 1   Comments: 0

compute the double integral ∫_(y=0) ^1 ∫_(x=0) ^2 x^2 dxdy and ∫_(y=0) ^1 ∫_(x=0) ^2 y^2 dxdy

$$\boldsymbol{\mathrm{compute}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{double}}\:\boldsymbol{\mathrm{integral}} \\ $$$$\int_{\boldsymbol{\mathrm{y}}=\mathrm{0}} ^{\mathrm{1}} \int_{\boldsymbol{\mathrm{x}}=\mathrm{0}} ^{\mathrm{2}} \boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}}\:\boldsymbol{\mathrm{and}}\:\:\int_{\boldsymbol{\mathrm{y}}=\mathrm{0}} ^{\mathrm{1}} \int_{\boldsymbol{\mathrm{x}}=\mathrm{0}} ^{\mathrm{2}} \boldsymbol{\mathrm{y}}^{\mathrm{2}} \boldsymbol{\mathrm{dxdy}} \\ $$$$ \\ $$

Question Number 226362    Answers: 1   Comments: 0

Question Number 226371    Answers: 0   Comments: 0

calculate the volume of a sphere using double integral

$${calculate}\:{the}\:{volume}\:{of}\:{a}\:{sphere} \\ $$$${using}\:{double}\:{integral} \\ $$

Question Number 226351    Answers: 1   Comments: 0

Prove Mo^ bious String is Not a Orientated Surface. σ(u,θ)= { (((1−u∙sin((1/2)θ))cos(θ))),(((1−u∙sin((1/2)θ))sin(θ))),((u∙cos((1/2)θ))) :} , −(1/2)≤u≤(1/2) , 0≤θ≤2π

$$\mathrm{Prove}\:\mathrm{M}\ddot {\mathrm{o}bious}\:\mathrm{String}\:\mathrm{is}\:\mathrm{Not}\:\mathrm{a}\:\mathrm{Orientated}\:\mathrm{Surface}. \\ $$$$\sigma\left({u},\theta\right)=\begin{cases}{\left(\mathrm{1}−{u}\centerdot\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right)\right)\mathrm{cos}\left(\theta\right)}\\{\left(\mathrm{1}−{u}\centerdot\mathrm{sin}\left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right)\right)\mathrm{sin}\left(\theta\right)}\\{{u}\centerdot\mathrm{cos}\left(\frac{\mathrm{1}}{\mathrm{2}}\theta\right)}\end{cases}\:\:,\:−\frac{\mathrm{1}}{\mathrm{2}}\leq{u}\leq\frac{\mathrm{1}}{\mathrm{2}}\:,\:\mathrm{0}\leq\theta\leq\mathrm{2}\pi \\ $$

Question Number 226340    Answers: 0   Comments: 0

Question Number 226322    Answers: 0   Comments: 2

Question Number 226338    Answers: 0   Comments: 0

Question Number 226339    Answers: 1   Comments: 0

Question Number 226334    Answers: 2   Comments: 2

Question Number 226336    Answers: 0   Comments: 0

Question Number 226337    Answers: 4   Comments: 0

Question Number 226278    Answers: 1   Comments: 0

Question Number 226292    Answers: 2   Comments: 0

Question Number 226291    Answers: 1   Comments: 0

  Pg 1      Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com