Question and Answers Forum
All Questions Topic List
AllQuestion and Answers: Page 1
Question Number 213890 Answers: 0 Comments: 0
Question Number 213888 Answers: 0 Comments: 1
Question Number 213887 Answers: 0 Comments: 0
$$\:\:\:\mathrm{Find}\:\mathrm{amplitude},\:\mathrm{period},\:\mathrm{maximum}\: \\ $$$$\:\:\mathrm{and}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{for}\:\mathrm{function} \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{6}\:\mathrm{tan}\:\left(\frac{\mathrm{1}}{\mathrm{5}}\mathrm{x}\right)−\mathrm{8}\: \\ $$
Question Number 213877 Answers: 0 Comments: 0
$$\mathrm{evaluate}. \\ $$$$\int_{−\pi} ^{\:+\pi} \:\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{3cos}^{\mathrm{2}} \left({z}\right)}\:\mathrm{d}{z} \\ $$$$\mathrm{real}\:\mathrm{analysis}\:\mathrm{method}: \\ $$$$\mathrm{complex}\:\mathrm{analysis}\:\mathrm{method}: \\ $$
Question Number 213871 Answers: 0 Comments: 5
Question Number 213884 Answers: 0 Comments: 1
Question Number 213861 Answers: 1 Comments: 0
Question Number 213859 Answers: 0 Comments: 5
Question Number 213844 Answers: 3 Comments: 0
$$\:\int_{−\mathrm{1}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }} \int_{\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }} ^{\sqrt{\mathrm{2}−{x}^{\mathrm{2}} −{y}^{\mathrm{2}} }} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }\:{dzdydx} \\ $$
Question Number 213841 Answers: 1 Comments: 0
$$ \\ $$$$\:\:{Find}\:{the}\:{vertical}\:{asymptots} \\ $$$$\: \\ $$$$\:\:{of}\:\:,\:\:\:{f}\left({x}\right)=\:\mathrm{tan}\left(\frac{\:\pi}{\mathrm{2}{x}\:+\:\mathrm{2}}\:\right)\:\:{in}\: \\ $$$$\: \\ $$$$\:\:\:\:\:\left[\:\mathrm{0}\:\:,\:\:\:\mathrm{4}\:\right] \\ $$$$\:−−−−−−−−−−−−− \\ $$$$ \\ $$
Question Number 213838 Answers: 1 Comments: 1
Question Number 213835 Answers: 1 Comments: 0
Question Number 213821 Answers: 2 Comments: 0
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{x}}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right)^{\frac{\mathrm{sinx}}{\mathrm{x}\:−\:\mathrm{sinx}}} \:\:=\:\:? \\ $$
Question Number 213818 Answers: 1 Comments: 1
Question Number 213803 Answers: 2 Comments: 2
Question Number 213802 Answers: 3 Comments: 0
Question Number 213797 Answers: 1 Comments: 0
Question Number 213796 Answers: 4 Comments: 0
Question Number 213817 Answers: 0 Comments: 1
Question Number 213791 Answers: 2 Comments: 2
$$\mathrm{If}\:\:\:\mathrm{x}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{4}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:=\:\:\mathrm{10} \\ $$$$\mathrm{Find}\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{x}}\:−\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}}]{\mathrm{x}}}\:\:+\:\:\mathrm{3}\:\:=\:\:? \\ $$
Question Number 213790 Answers: 0 Comments: 2
$$\mathrm{So}\:\mathrm{Weird}...... \\ $$$$\int_{\mathrm{0}} ^{\:\infty} {J}_{\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$$${J}_{−\nu} \left({t}\right)=\left(−\mathrm{1}\right)^{\nu} {J}_{\nu} \left({t}\right)\:\: \\ $$$$\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}=\frac{\left(−\mathrm{1}\right)^{\nu} \left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{−\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}}\:\mathrm{is}\:\mathrm{true} \\ $$$$\mathrm{But}\:\int_{\mathrm{0}} ^{\:\infty} \:{J}_{−\nu} \left({t}\right){e}^{−{st}} \mathrm{d}{t}\:\mathrm{is}\:\mathrm{not}\:\frac{\left({s}+\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}\right)^{\nu} }{\:\sqrt{{s}^{\mathrm{2}} +\mathrm{1}}} \\ $$$$\mathrm{why}....?\:\mathrm{can}\:\mathrm{you}\:\mathrm{explain}\: \\ $$$$\mathrm{why}\:\mathrm{Blue}\:\mathrm{equation}\:\mathrm{is}\:\mathrm{not}\:\mathrm{true}.... \\ $$
Question Number 213776 Answers: 1 Comments: 0
$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{F}{ind}\:\:{the}\:\:{value}\:{of}\:\:{the}\:{following} \\ $$$$\:\:\:\:\:\:\:\:\:\:{expression}. \\ $$$$\:\:\:\:\: \\ $$$$\:\:\:\:\Omega=\:\:\:\frac{\:\mathrm{I}{m}\left(\:\mathrm{Li}_{\mathrm{2}} \:\left(\mathrm{2}\right)\right)}{\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \:\mathrm{ln}\left(\mathrm{sin}\left({x}\:\right)\right)\:{dx}}\:\:=\:? \\ $$
Question Number 213764 Answers: 1 Comments: 0
Question Number 213759 Answers: 0 Comments: 0
Question Number 213757 Answers: 0 Comments: 0
Question Number 213756 Answers: 1 Comments: 0
Pg 1 Pg 2 Pg 3 Pg 4 Pg 5 Pg 6 Pg 7 Pg 8 Pg 9 Pg 10
Terms of Service
Privacy Policy
Contact: info@tinkutara.com